Parallel multivariate slice sampling
نویسندگان
چکیده
Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) since it can be challenging to construct multivariate updates, the updates are typically univariate, which often results in slow mixing samplers. We propose an approach to multivariate slice sampling that naturally lends itself to a parallel implementation. Our approach takes advantage of recent advances in computer architectures, for instance, the newest generation of graphics cards can execute roughly 30, 000 threads simultaneously. We demonstrate that it is possible to construct a multivariate slice sampler that has good mixing properties and is efficient in terms of computing time. The contributions of this article are therefore twofold. We study approaches for constructing a multivariate slice sampler, and we show how parallel computing can be useful for making MCMC algorithms computationally efficient. We study various implementations of our algorithm in the context of real and simulated data.
منابع مشابه
Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method
Abstract The shrinking rank method is a variation of slice sampling that is efficient at sampling from multivariate distributions with highly correlated parameters. It requires that the gradient of the logdensity be computable. At each individual step, it approximates the current slice with a Gaussian occupying a shrinking-dimension subspace. The dimension of the approximation is shrunk orthogo...
متن کاملSlice Sampling
Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertica...
متن کاملSlice Sampling 707
Markov chain sampling methods that adapt to characteristics of the distribution being sampled can be constructed using the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with unifo...
متن کاملSlice Sampling with Multivariate Steps by Madeleine B
Slice Sampling with Multivariate Steps Madeleine B. Thompson Doctor of Philosophy Graduate Department of Statistics University of Toronto 2011 Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety of multidimensional probability distributions. Unfortunately, MCMC is often difficult to use when components of the target distribution are highly correlated or have dispa...
متن کاملSlice Sampling with Multivariate Steps
Slice Sampling with Multivariate Steps Madeleine B. Thompson Doctor of Philosophy Graduate Department of Statistics University of Toronto 2011 Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety of multidimensional probability distributions. Unfortunately, MCMC is often difficult to use when components of the target distribution are highly correlated or have dispa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2011